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the onset of specimen nonlinearity. Using constant applied stress increments,
a series of damage/crack propagation analyses is performed using the strain
energy density criterion. Specimen instability loads are predicted from the
crack instability condition.

Increasing specimen size is shown to lead to less crack growth prior to
instability. Load-displacement data was converted to a strain-strain repre-
sentation for each of the specimens. The influence of specimen size and sub-
sequent material inhomogeneity inside the specimen are evident in the differ-
ent responses obtained for each specimen from the same constitutive law used
as input for the analysis. The scaling of specimen size to crack growth is
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ABSTRACT

--- A fundamental problem of structural analysis is the prediction of the

final failure made. Traditional approaches to the extreme forms of failure,

i.e. plastic collapse and fracture instability, invoke a particular failure

criterion to address one assumed failure mode. The appearance of the other

mode is precluded by such an approach.

A criterion is presented which addresses both macrocrack propagation and

local changes in material properties using strain energy density. The damage

state of the material at a particular instant of its load history is assumed

to be governed by loading versus unloading behavior of the material's consti-

tutive law. Macrocrack instability is assumed to occur when the size of the

core region around the crack tip exceeds the predicted growth increment.

This core region is defined by the closed contour of constant strain energy

density equal to the maximum value addressed by the constitutive law. Crack

growth increments occur in the direction of minimum strain energy density.

The length of the crack growth increment is governed by the relative toughness

of the material in the direction of propagation. --

The criterion is applied to a set of three cylindrical test specimens

using the finite element method. A brittle-elastic material is used to dem-

onstrate the criterion. Damage at the continuum scale for this type of

material is treated in terms of a local reduction in the elastic modulus. The

specimens are all geometrically similar, with lengths equal to 4 times the

radii. They vary in size with radii of 0.3", 0.4", and 0.5", respectively.
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Uniaxial stress is applied to the ends of each specimen. A 0.1" radius crack,

perpendicular to the specimen axis, is assumed to coincide with the onset of

specimen nonlinearity. Using constant applied stress increments, a series of

damage/crack propagation analyses is performed using the strain energy density

criterion. Specimen instability loads are predicted from the crack instability

condition.

Increasing specimen size is shown to lead to less crack growth prior to

instability. Load-displacement data was converted to a strain-strain repre-

sentation for each of the specimens. The influence of specimen size and sub-

sequent material inhomogeneity inside the specimen are evident in the differ-

ent responses obtained for each specimen from the same constitutive law used

-as input for the analysis. The scaling of specimen size to crack growth is

-) demonstrated using the strain energy density factor.
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INTRODUCTION

The prediction of structural component failure in the presence of micro-

damage and macrocrack propagation is an area of fundamental interest which is

not well understood. The traditional approach to failure prediction has been

to apply separate and distinct criteria to different energy dissipative pro-

cesses (e.g. plasticity versus macrocrack propagation). In contrast, this

investigation has been directed toward the development of a criterion, based

on strain energy density, which treats both microdamage and macrocrack prop-

agation together in a consistent manner.

The utility of any criterion used to predict structural component behav-

ior and failure lies in its ability to address a wide range of loading condi-

tions and structural applications. In practice, the principles of continuum

mechanics are used to define the quantities which govern elastic and elastic-

plastic material behavior. Unfortunately, it is a commonly observed fact that

the size of a material test specimen, the independent variable of loading, and

the rate at which the loading proceeds may significantly alter the observed

behavior of a material. This is present across scale boundaries, from global

response to microstructural appearances to dislocation movement. The use of

any such test results are subject to question if no meaningful interpretation

is available to relate a particular specimen behavior to the material behavior

in the component itself. For any material test to be complete, the evaluation

of material constants and material behavior parameters must be approached with

a recognition of the role that specimen size and loading rate effects do

indeed have on the specimen, and will subsequently have, when applied to

analytic or numerical modeling.

-3-
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It is the purpose of this investigation to propose a material testing

procedure which addresses these aspects of material behavior. The response

of three uniaxial test specimens, each of a different size, will be calcu-

lated using finite element procedures and the strain energy density criterion.

The material constitutive relation and load increment will be fixed for all

three specimens. In addition to the influence of specimen size on global

nonlinear behavior, the numerical prediction of crack instability parameters

will be presented along with results useful in estimating the size of speci-

mens which will fail in an ideally brittle manner.

.4-
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STRAIN ENERGY DENSITY THEORY OF MICRODAMAGE AND MACROCRACK PROPAGATION
.

Strain Energy Density Theory, as proposed by Sih [1,2] and applied to
microdamage by Sih and Matic [3,4], makes use of the energy state of the

material and its associated material properties. The theory predicts both

the onset, development, and intensity of microdamage as well as the direction

and magnitude of macrocrack growth increments. The treatment of both macro-

and microdamage by one quantity is in contrast to traditional failure

criteria which select the failure mechanism prior to analysis.

The value of strain energy density function AW/AV at any two points of a

solid body subjected to load, in the absence of singularities, will generally

be on the same order of magnitude. The presence of strain energy concentra-

S-." tions or singularities, however, will produce regions of intense deformation.

In such regions the constitutive equations used in the analysis of the body

may be inadequate to describe the material behavior at the continuum scale.

In the case of a well defined macrocrack, the singularity associated with the

crack tip results in a "core region", necessitating the investigation of

material elements at a finite distance from the crack tip, where the techniques

of continuum stress and damage analysis remain valid.

The strain energy density field in the neighborhood of the crack tip has

the form

AW = I [S(a,e, material properties)] + nonsingular terms (1)
- V F

where r is the radial distance from the crack tip, a is the crack length

parameter, e is the angular position coordinate, and the function S is the

-5-



strain energy factor which is the coefficient of the r-1 singularity exhibited

by the energy density field. In the case of linear, homogeneous and isotropic

elasticity, the strain energy density factor can be expressed in terms of the

stress intensity factors k1 , k 2 and k3 as

S = allk2 + al 2klk 2 + a22k + a33k (2)

where the a1j (ij = 1,2,3) are functions of the elastic shear modulus,

Poisson's ratio, and angle e. The stress intensity factors take the form

k =c k/" (3)

where the c are geometry and load dependent, and akt is the remote applied

stress. For more common cases where microdamaged material is near the crack

tip, this lack of homogeneity precludes a one parameter characterization of

the crack tip. Furthermore, the present lack of an adequate analytical treat-

.5 ment of the crack tip requires a numerical approach to the region.

A description of the continuum behavior of a material must address both

the microdamage and macrocrack propagation processes. Traditionally, the

global load-displacement response of a uniaxial tensile specimen has been

used to measure the elastic modulus and Poisson's ratio of a nonlinear

isotropic material. This is accomplished by defining the true stress and

true strain, referenced to cross sectional specimen area and specimen length.

The true stress - true strain response of the material remains valid for as

long as the specimen exhibits material homogeneity. The irreversible pro-

cesses which develop, however, inevitably produce material inhomogeneity

within the specimen. This invalidates the measurement of continuum prop-

-6-
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erties from the specimen in the rigorous sense.

The translation of the aggregate continuum behavior within =he specimen

to the global specimen response, in light of specimen inhomogeneity, is a

question fundamental to any type of structural behavior prediction. To in-

vestigate this in a consistent manner requires a knowledge of the strain

energy density behavior at the continuum scale. If one assumes that an

appropriate true stress - true strain curve characterizing an isotropic

material at the continuum scale is available, the strain energy density at

some point in the loading history is

-- A k

:'" V f' ode (4)

0

where a is the true strain, and ek is some value of the true strain prior to

specimen failure. For an assumed material response, such as in Figure 1, the

true stress - true strain curve is assumed to be expressible by the relations

a E1  <ay (5)

n

_ =i (>_y (6)

ay

The strain energy density obtained from such a true stress - true strain

relation will be

(AW 'Y ek

(V) = ode + f ode
0 Ly

n+l n+l
AW.) +
AV n n+ly

l.y n+l n+lI"-' 1. + a°y k - (7)

E1 + n n+l (7)
-y
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Figure 1 - Strain Energy Density Definitions From

Uniaxial True Stress - True Strain Curve

The onset of yielding, or the dissipation of energy through micro-

damage, will occur when

AW W (8)
T)-y

For subsequent loading

AW AW (9)(V) > (V)y

y

and the energy dissipated, in the material element, i.e. (AW/AV)d, corresponds

to the area OYA on the stress-strain curve. Any material elements which are

microdamaged and lie on the subsequent fracture path of the macrocrack

" -8-
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will be less resistant to fracture by the amount (AW/AV)d. Hence, the value

of critical strain energy density is relative to the energy already dissipated,

according to the relation

W Aw
(AW UW (10)

c AV)c d

If the crack propagates into undamaged material, then clearly no microdamage

is present to weaken the material, and

AW AW (11)=V (TV) c

cc

The relation of the relative critical value of (AW/AV) to the critical value
C

(AW/AV)c is given by the respective areas OAUE and OYAUE on the schematic

stress-strain curve, as seen in Figure 1, for loading to an arbitrary point A.

For unloading, it will be assumed in this report that the material

behaves in a pseudo-linear elastic manner by unloading along line AO back to

the origin. The advantages of such a material model lie in the ability to

investigate fundamental aspects of global stiffness of the specimen as com-

pared to the reduced local stiffness (i.e. the reduced elastic modulus) at

the continuum scale. It should be evident that for each value of strain

energy density

AW AW
-. ,m w > UVw (12)

P-" i y

their corresponds a value of secant elastic modulus (or reduced modulus)

Ei < E (13)

since yielding of the material is a continuous process, the secant modulus

-9-
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will assume a spectrum of values throughout the load history. Furthermore,

the interaction of macro and microdamage may be addressed in a more meaningful

way when the damage processes qualitatively produce the same types of effects

at their respective scales. The fundamental concepts of the theory remain

applicable to a wide variety of materials and dissipative processes.

At any point A on the stress-strain curve, the recoverable elastic strain

energy density will be area OAB. The additional energy required to reach the

critical value (AW/AW)c may be defined as (AW/AV) , which corresponds to the

area AUEB under the curve. The relative critical strain energy density may

, then be expressed as

AW (AW + (AV) (14)

The fundamental hypotheses of the strain energy density theory applied

to both fracture and yielding may be stated as follows:

(I) Yielding and fracture are assumed to coincide with the locations of

relative maximum (AW/AV) max and relative minimum (AW/AV)min of the strain

energy density function.

(II) Yielding and fracture are assumed to occur when (AW/AV)max and

(AW/AV)mi reach their respective critical values, (AV and (7).
y c

(III) The local response of the material, to either an increase or

decrease in applied load, is governed by the amount of strain energy dissi-

pated by smaller scale processes within a continuum material volume. This

dissipation occurs within the range (AW/AV)y < (AW/AV) < (AW/AV)c

-10-
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(IV) The amount of each incremental of crack growth in fracture, say

rj, is given by

*W S.
SAW =j (15)" ... AVC  rj

as shown in Figure 2. The * superscript takes into account the influence

of smaller scale damage on the local material toughness and on the nature of

the singular energy field as influenced by the current state of the material.

From the amount of incremental crack growth, the strain energy density

factor at each increment, say SI , S2, . is calculated from the relation

S1  S2  S.* rc 1 (16)
'VC r 1  r2  r.

This is shown in Figure 3.

If the crack growth process leads to instability Sf/r approaches

Sc/rc, where Sc and rc are material parameters.

The prediction of crark instability follows from an examination of the

range of strain energy density magnitudes described by the constitutive law and

its relation to the concept of the core region near the crack tip. For a

given material constitutive law, consider the core region to be defined as

the material volume enclosed by a surface of constant AW/AV equal to the

lowest value of (AW/AV) calculated from the true stress - true strain curveC
of the material. Physically, this surface represents a volume of material

.for which the constitutive law is invalid in the strain energy density sense.

- The lowest value of (AW/AV)* physically corresponds to that state of the
c

)-11
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material for which the material may no longer dissipate energy through smaller

scale mechanisms should AW/AV exceed (AW/AV)*.
C'

As described above, the intersection of AW/AV and (AW/AV)c in thec
direction of crack propagation will govern the size of the crack growth incre-

ment according to Equation (15). Typically, the boundary of the core zone

will lie within the increment of crack growth (Figure 4). That portion of

stable crack growth, within the core region, proceeds into material unable to

further dissipate energy through smaller scale mechanisms. The crack is

momentarily destabilized in this region. The portion of the crack growth

increment extending from the core region boundary out to the end of the incre-

ment, but still able to dissipate energy through small scale mechanisms, will

locally stabilize the crack at its new length. This process repeats itself

for subsequent stable crack growth increments.

As the crack grows in a stable manner, the core region will gradually

increase in size while the size of the crack growth increments will also

generally increase, though at a relatively slower lineal rate. (While it is

assumed that the crack is situated and grows in such a manner, this discussion

does not preclude situations where these growth increments may be attenuated

due to structural geometry, load history, etc.) At some point, the size of the

core region boundary in the direction of crack growth will reach or exceed the

length of the crack growth increment itself (Figure 5). In the absence of

any additional dissipative capability of material in this increment, it

will be assumed that the crack will not arrest at the end of such an

increment. This, of course, corresponds to crack instability in the

-13-
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" , global sense. If the boundary of the core region happens to lie outside the

increment length, overload of the crack results. If, at some point in the

crack trajectory, the structural geometry, load history, or other factors

cause the relative size of the core region to diminish below the crack incre-

ment size, crack arrest is assumed to occur, and stable growth analysis could

proceed.

4..5

-%-p

I' .

-. 4

T-15-

4,

.5.



- - 76.. -T -77--.- Z

MATERIAL TESTING CONSIDERATIONS ADDRESSING
SPECIMEN SIZE AND LOADING RATE EFFECTS

As mentioned above, the continuum analysis of structures is dependent on

the ability of a simple test (or a set of simple tests) to characterize the

material constants and material behavior parameters which appear in the con-

stitutive law of the material. It is important, at this point, to clearly

distinguish between these two terms as they apply to this investigation.

Specifically, a "material constant" will refer to a parameter which is observed

to be independent of the conditions and specifics of the test used to measure

its value. A "material behavior parameter" will refer to a quantity which is

unique to the conditions and the specifics of the test used to measure its

value. In the case of linear, isotropic elasticity, two independent material

constants (e.g. Young's modulus and the shear modulus) are required to

characterize the material behavior. In the case of nonlinear, isotropic

elasticity or elastic-plastic deformation, material constants alone are in-

adequate to describe the material behavior. Typically, one or more material

parameters (e.g. strain hardening exponent) are introduced to account for the

observed nonlinearity of the material. Such nonlinearity is often quite

sensitive to the method used to obtain its value.

Nonlinear response of material test specimens to applied load is asso-

*ciated with the energy dissipative processes within the material. Plasticity

and microcracking are two examples of this. The precise nature of these

processes may not be readily evident, physically measurable, or even relevant

". to practical large scale structural analysis. The appearance and manifesta-

tion of these dissipative processesand their influence on the material

*behavior parameters, are often very sensitive to the conditions which the

-16-



-specimen is subjected to. In general, this sensitivity is observed to be

influenced by: i) the physical dimensions of the structural component as

* compared to a characteristic material continuum dimension, ii) whether the

i" independent variable of loading is a prescribed boundary traction or a pre-

scribed boundary displacement, iii) the rate at which the prescribed loading

is applied, iv) the thermal environment of the material, and v) the chemical

*i environment of the material.

It should be clearly emphasized that while the loading rate will

influence the material behavior parameters, this does not necessarily cast any

subsequent analysis into an explicitly time dependent form. The quasi-static

assumptions of linear and nonlinear analyses still hold. This applies even

when the dependence of the material parameters on the type of material test

is addressed, as is the case here.

Any model of material behavior for structural component analysis and

design will do so through a unique material constitutive relation. This

relation, by definition, will address local nonlinearity of the material

behavior. Such a relation, however, should be evaluated in a model of an

appropriate material test specimen. A material specimen, as already mentioned,

may be relatively straightforward to define from theoretical considerations

for purely elastic responses. The interpretation of test data for dissipative

responses is far more difficult due to the material inhomogeneity of the

specimen caused by the loading. This becomes apparent for any appreciable

level of global nonlinearity. The effects of specimen size, loading scheme,

loading rate, temperature, and environment may individually, or in combina-

tion, produce this effect.

-17-



For the purposes of this report, attention will be directed toward the

effects of specimen size at constant loading rate for stress controlled

loading. In general, the concepts and procedures demonstrated here are

applicable to a wide range of conditions, which may include differences in

loading rate, temperature, or chemical environment.

*-148
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FINITE ELEMENT MODELING OF CYLINDRICAL TEST
SPECIMENS AND THE RELATION TO MATERIAL TESTING

The effects of specimen size and loading rate may be parametrically

investigated for a given constitutive relation using the finite element

method. Generally, an increase in specimen dimensions is accompanied by a

decrease in the specimen ductility, as shown schematically in Figure 6. A

-.' specimen size parameter D may be defined from the specimen volume to surface

area ratio as

D = V (17)

- At a constant value of the size parameter D, an increase in the loading rate

also suppresses ductile behavior of the specimen. This is shown schematically

in Figure 7.

It should be noted that quantities such as the ultimate stress au and

ultimate strain eu, which coincide with the final fracture of the specimen,

are often used to characterize a material's resistance to fracture. The

fact that energy is dissipated during the fracture process leads one, more

correctly, to lefine the strain energy required to produce fracture in the

specimen as the quantity relevant to material behavior and to the fracture

process. The previous discussion of the strain energy density theory, as
applied to both macrocrack propagation and microdamage, addresses fracture

toughness at the continuum scale in detail through the use of the critical

strain energy density (AW/aV) c

In light of these comments, it should also be noted that the strain
energy density at yield, i.e. (AW/AV)y, is in general observed to increase

y
*with increasing rate of loading. This is, of course, related to the manner

-19-
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in which mechanisms below the continuum scale are able to dissipate energy.

For similar reasons, the critical value of strain energy density is seen to

decrease for higher loading rates. The intermediate energy densities between

(AW/AV)y and (AW/AV)c , for a given set of test conditions, provides an

envelope of material behavior whose role in global response and macrocrack

growth must be addressed (Figure 8).

Surface Generation
[ i At Continuum Scale

(AW

UTV
- , Dissipative

• = AW

Fully
SRecoverable

'U
4-J

Increasing

Loading Rate

Figure 8 - Typical Response Regimes Of Material
Element To Strain Energy Density

A compressive test program to characterize the influence of size and

rate effects on the material behavior and strain energy density function would

identify: i) the sensitivity of the material to the specimen size and specimen

loading rates representative of those expected in service, ii) evaluate the

material constitutive relation, and iii) quantify this dependence for the

designer.

-21-I4
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....Consider, for example, the evaluation of a particular material (described

by an appropriate constitutive law) using nine individual tensile tests.

Three different specimen sizes would each be tested at three different

loading rates, for the total of nine tests. The load-displacement responses

of the specimens would be influenced by the size of the nucleated macrocrack,

the crack growth increments and the material damage below the continuum scale

prior to global instability of the specimen.

In order to demonstrate the effect of local material inhomogeneity on

specimen global response, a finite element simulation of three uniaxial tensile

specimens was performed. All three specimens were assumed to be of the same

material, with the constitutive relation shown in Figure 9, but of different

sizes. For simplicity, they will be referred to as small, medium, and large.

All external specimen dimensions are scaled proportionally as 3: 4: 5 and are

-shown in Figure 10. Each cylindrically shaped specimen had a diameter-to-

length ratio of 2.0, which was found to adequately represent the remote con-

stant stress loading condition at the upper and lower boundaries for inhomo-

geneity in the center of the specimen. This eliminated the necessity of

including the threadedportion of such a specimen in the analysis, which would

have significantly increased the overall computational requirements.

As is commonly observed from tensile specimens loaded to fracture, a

circu"lar macrocrack will coalesce internally in the specimen, perpendicular

to the specimen axis. The transition of a continuum region from a crack free

zone to a zone with an initiated crack is not well understood. With this

deficiency, the process is difficult to include in an analytical or numerical

scheme without the use of some assumptions based on observation. For this
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Figure 9- True Stress -True Strain Relation
For Finite Element Model

analysis, initiation of a macrocrack was assumed to coincide with the onset

of nonlinear specimen response. The radius of the initiated crack was taken

as 0.1" in all cases.

For the medium sized specimen, the onset of the global nonlinear response

was assumed to occur when the average applied stress was equal to the yield
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Figure 10 - Axisymmetric Test Specimens

point of the constitutive relation. For the material under consideration the

yield stress was 40,000 lb/in 2. The onset of global nonlinearity in the

large and small sized specimens was assumed to occur at 45,000 and 35,000 psi,

respectively. This assumption reflects the suppressed and enhanced ductility
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attributable to the effect of specimen size. Finite element grids for each

of the three specimen geometries are shown in Figures 11, 12, and 13. All

elements are 12 node, cubic displacement, isoparametric elements. The

* initiation crack size of 0.1" is identical for all specimens as discussed

.. above, as is the grid in the immediate vicinity of the crack. From the

axisymmetric nature of the specimen, only one quadrant of a diametrical cross

section is necessary for each finite element model. A total of 73 elements

were used in the small size specimen grid, with 411 nodes. For the medium

size specimen 79 elements and 444 nodes were used, while for the large size

*. specimen, 85 elements and 477 nodes were used.

The Axisymmetric/Planar Elastic Structures (APES) fracture mechanics

and stress analysis finite element program [ 5] performed the stress analysis

portions of each load increment. The rI/2 displacement filed in the immediate

vicinity of the crack tip is embedded in the solution through the use of 1/9

and 4/9 nodal spacing on the element sides adjacent to the crack tip. The

CDC 6400 computer used in this investigation required between 190 and 215

system seconds and 160k of central memory to complete the stress analysis at

each point in the incremental analysis for a given specimen load and damage

distribution.

The microdamage processes that occur in the material manifest themselves

-" by changes in the material properties at the continuum level. The finite

element formulation allows for this by associating with each element one of

25 different material property pairs (i.e. elastic modulue E and Poisson's

ratio v). The set of properties (EY,vI) corresponding to the initial

elastic behavior of the material, while 24 discrete material property pairs

(Ei,vi ) or i = 2,3,4,---,24 correspond to different stages of damaged

material.
-25-
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Figure 11 - Small Size Axisymmetric
Specimen Finite Element Grid
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The extension of the macrocrack in the specimen, as determined by the

crack growth criteria, is incorporated into the finite element model by a

uniform expansion of the crack zone shown schematically in Figure 14. The

dimensions of this zone boundary expand in proportion to the percentage growth

of the macrocrack, within the confines of the overall grid boundary. The

remaining element sizes are decreased to preserve the external specimen dimen-

sions. Small changes in the damage zone will occur from this algorithm.

However, since crack growth increments are typically less than 10% of the

current crack length, the effect of this on the global specimen response will

be negligible. Crack instability will occur, in the context of the discreti-

zation when the lowest value of (AW/AV)c is reached in the element ahead of

the crack tip.

Using the concepts and procedures outlined above, the total load P versus

surface displacement 8 responses of the three specimens are shown in Figure

15. The failure loads of the small, medium, and large size specimens are

15000, 27600, and 44800 pounds, respectively. The nonlinearity of the

responses are, of course, generated by the effects of nonlocalized, low

*i intensity damage away from the crack, higher intensity damage in enclaves

near the crack periphery, and the crack growth itself.

The load-displacement response of each of the three tensile specimens

was converted into an applied true stress - true strain response. Use of the

axial displacement 6 of the exterior surface farthest from the crack plane

was consistent with traditional methods of defining strain. These results

are shown in Figure 16.
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The large specimen is clearly departing from a linear response in a

more dramatic manner than either the medium or small sized specimen. This is

due to two factors. First, the large specimen macrocrack is initiated at

a higher load. The macrocrack propagation will be enhanced by this fact.

Second, the intensity of the microdamage will significantly reduce the value

of the relative critical strain energy density. This further enhances crack

growth and reduces the local material stiffness throughout the specimen.

The response of the medium specimen, as compared to the small specimen,

exhibits the same type of behavior, but to a lesser degree. Due to the

difference in the applied loads corresponding to the onset of nonlinearity,

the overall reduction in stiffness of the two specimens will be likewise

suppressed.

The plots of strain energy density AW/AV versus distance ahead of crack

tip are given in Figures 17, 18 and 19 for the three specimen sizes. The

current value of relative critical strain energy density (AW/AV)c , reflecting

on the intensity of material damage ahead of the crack, is also shown at each

loading increment for crack propagation. The intersection of AW/&V and

(AW/AV)* yields the increment of crack growth.c

The relative strain energy density factor S is plotted against the

crack growth increment Aa in Figure 20 as calculated from Equation 15. Since

the intensity of material damage ahead of the crack tip is changing, the

value of (AW/AV)c will, in general, be different for each crack growth

increment. This results in non-self-similar growth of the combined crack and

damage zone. The nonlinear nature of S versus Aa is an indication of this
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fact. The curves generated by each of the three specimen sizes, however,

clearly are one and the same. This leads to the observation that the evolu-

tion of the crack into material of any damage intensity (within the bounds

of possible material behavior) may be described by such a curve.

From the crack growth increments predicted by the finite element

analyses, the strain energy density factor S can be calculated from Equation

(15).The plot of S versus the increment of crack growth Aa, for all three

specimens, clearly indicates the linear relationship of these two quantities

for the given material (Figure 21). All three lines are coincident,

identifying the S versus Aa curve as being unique to crack growth in this

material at the prescribed loading rate regardless of specimen size.

* The relative strain energy density factor S versus crack growth a-a0

(or crack length a) is nonlinear for each specimen size (Figure 22). The

effect of specimen size is evident by the relative shift to higher values of

S for larger specimen sizes. Final instability of the crack coincides with

the abrupt change in behavior of the final data points for each of the three

* specimens. Each of these three points coincides with the final increment of

crack growth into material at the limiting intensity of damage governed by

the true stress - true strain curve.

The relation of the strain energy density factor S versus crack growth

a-ao (or crack length a) is shown in Figure 23. The linear nature of S versus

a is apparent. The effect of specimen size results in a relative shift of

the lines toward higher values of S for larger specimen sizes. Crack

instability is also accompanied by points whose location differs significantly

from their expected location on the S versus a-a0 line corresponding to stable

growth. -38-
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The crack growth ac-a corresponding to specimen instability, was calcu-

lated to be 16.9, 16.4, and 15.6% of the initiation crack length ao for the

small, medium, and large specimens. The influence of increasing specimen size

leads to less total crack growth a-ao , despite the larger growth per increment

Aa, because fewer load increments are required to reach instability.

The critical value of the relative strain energy density factor S* may be

estimated from the intersection of the nonlinear S* versus a curve and the

straight line of slope min (AW/AV). This is shown in Figure 20. Min (AW/AV)c,

as discussed before, corresponds to the lowest value of material toughness

described by the constitutive relation. The final calculated increment of

*crack growth and final load are always slightly greater than or equal to the

values necessary for incipient crack instability. This implies that some

measure of overload has been imparted to the specimen, providing slightly more

than the minimum energy required for instability.

For the material used in this investigation, Sc is estimated to be

5.25 lb-in/in2 . From Equation (15), the value of Sc is calculated to be

8.40 lb-in/in 2, and is shown in Figure 21.
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CONCLUDING REMARKS

This sample set cf calculations has shown how the strain energy density

concept may be used to address material damage and macrocrack propagation in

the framework of a single consistent criterion based on the strain energy

density behavior of the material. Finite element analyses of post-yield

behavior, accompanied by macrocrack initiation and a period of stable crack

growth, has demonstrated the application of the model in the case of three

geometrically similar brittle-elastic specimens of different sizes. The

results of this study have shown how traditional methods of reducing load-

displacement data to a stress-strain representation are inadequate. The

difficulty of determining a unique material constitutive relation from such

data, in light of material inhomogeneity within the specimen during post-

yield behavior and the effects of specimen size, is apparent.

It should be noted that the magnitude of the load increment serves to
translate changes in the applied loading rate to the amount of stable crack

-- I

growth generated at the crack tip. The material constitutive law will be

a: relatively insensitive to the changes in loading rates considered away from

the crack tip. The relative rate at which energy is introduced into the

material within the core region will not, of course, be proportional to that

away from the crack tip. The applied loading rate as well as the growth rate

of the crack itself contribute to this effect. The net effect of moderate

increases in the remote applied loading rate is to advance the rate at which

material toughness decreases near the crack tip. This accelerates the crack

growth process, but over a smaller range of applied load defined from the on-

set of global nonlinearity to global instability. The influence of the load

.. -43-



. - increment size is currently being studied.

Failure, for the purposes of this investigation, has been defined as the

unstable generation of surface area by crack propagation. This may be too

liberal of a condition for a particular practical application. It does, how-

ever, represent an upper limit on the geometric integrity of the component.

* A subsidiary condition of failure may, of course, be defined. Excessive

deformation is an example of such a definition which may be useful when large

scale ductility is predicted for the specimen. The utility of the strain

energy density criterion lies in its ability to provide the designer with in-

formation on the global crack growth and final instability as well as a broad

spectrum of measures quantifying component performance. The practical capa-

- bility to estimate critical loads corresponding to different definitions of

failure (from a single yield-to-global fracture instability analyses) is a

- powerful tool not featured by theories able to address only particular failure

modes or employing restrictive assumptions on material behavior.

-

4

a

-44-

I

C. j



i .

BIBLIOGRAPHY

[1) Sih, G. C., "A Special Theory of Crack Propagation", Methods of Analysis

and Solutions of Crack Problems, ed. by G. C. Sih, Noordhoff International

Publishing, pp. XXI-XLV, 1973.

[2] Sih, G. C., "Some Basic Problems in Fracture Mechanics and New Concepts",

Engineering Fracture Mechanics, 5, pp. 365-377, 1973.

[3] Sih, G. C. and Matic, P., "Mechanical Response of Materials with Physical

Defects, Part 1: Modeling of Material Damage for Center Cracked Panel",

Institute of Fracture and Solid Mechanics Techncial Report AFOSR-TR-81-1,

1981.

[4] Sih, G. C. and Matic, P., "Mechanical Response of Materials with Physical

Defects, Part 2: Combined Modeling of Material Damage and Crack Propaga-

tion for Ceater Cracked Panel", Institute of Fracture and Solid Mechanics

Technical Report AFOSR-TR-82-2, 1982.

[5] Hilton, P. D., Gifford, L. N. and Lomacky, 0., "Finite Element Fracture

Mechanics of Two Dimensional and Axisymmetric Elastic and Elastic-Plastic

Cracked Structures", Naval Ship Research and Development Center Report

No. 4493, 1975.

4.

.4.

i.4

" -45-



70Al

It 4 1%

0 . I If

'It

A*A1

*;If
I q4k~~~ li, ,4 e 1 n

NUFRX,,


